Electronic Projects   |   Store   |   Schematics   |   Downloads   |   Search  

Circuit-Zone.com - Electronic Projects

USB Lipo Battery Charger
Posted on Thursday, August 20, 2009   •   Category: Battery Chargers

The MAX1551 and MAX1555 charge a single-cell 3.7V lithium-ion LiPo battery from both USB and AC adapter sources. They operate with no external FETs or diodes, and accept operating input voltages up to 7V. On-chip thermal limiting simplifies PC board layout and allows optimum charging rate without the thermal limits imposed by worst-case battery and input voltage. When the MAX1551 and MAX1555 thermal limits are reached, the chargers do not shut down, but progressively reduce charging current. The MAX1551 includes an active-low POK output to indicate when input power is present. If either charging source is active, active-low POK goes low. The MAX1555 instead features a active-low CHG output to indicate charging status. With USB connected, but without DC power, charge current is set to 100mA (max). This allows charging from both powered and unpowered USB hubs with no port communication required. When DC power is connected, charging current is set at 280mA (typ). No input-blocking diodes are required to prevent battery drain. The MAX1551 and MAX1555 are available in 5-pin thin SOT23 packages and operate over a -40C to +85C range.

Li-ion Battery Charger with TL431
Posted on Thursday, August 20, 2009   •   Category: Battery Chargers

This is a simple to build charger for single 3.7V lipo battery. The heart of the charger is TL431 shunt regulator that controls the incoming current. Charger comes with a convenient charging LED indicator. As charging current goes down so does the intensity of the LED.

Ultrasonic PSoC Range Finder
Posted on Wednesday, July 8, 2009   •   Category: Robots

The PSoC Range Finder is a simple, inexpensive ultrasonic distance meter that requires only the PSoC device, two 40-kHz ultrasonic transducers, two resistors, and two capacitors. Typical applications include positioning for robotics, generic distance measurement, and liquid-level measurement without contact.

2.5 GHz Frequency Counter
Posted on Wednesday, July 8, 2009   •   Category: Counters / Frequency Meters

An AVR controller can be used as a counter, although it is a bit more involved than with a PIC. The reason is that a PIC (at least the 16F84) has an asynchronous counter input. This input will handle frequencies up to app. 40 MHz. AVR's have a synchronous counter input which is sampled with the clock frequency, so it cannot measure frequencies over half the clock frequency. So, when using a 4 MHz clock, input frequencies must be lower than 2 MHz. Use 40% of the clock frequency to be on the safe side. The input frequency can be measured by starting an AVR counter. Wait some predetermined time and then stop the counter. Read the counter register, account for the measurement time, and you know the frequency. This sounds simple enough. Things get a little more complicated if you use an external (to the AVR) prescaler to measure higher frequencies. A prescaler can be seen as a counter itself, that produces an output pulse for every n counts of input pulses. Even if this external prescaler has not counted up to its limit, you will want to know this count value, because it adds to the AVR count value to get a resulting counter with more bits. An example: the AVR internal counter is 16 bits. It can count up to 65536 before overflowing to 0. If you use an external 14-bit counter (a 4020) as prescaler, it will increment the internal AVR counter at every 16384th input pulse. If you know the value of the 14-bit counter after the measurement time, you have effectively a 30-bit counter:

Posted on Wednesday, July 8, 2009   •   Category: Remote Control

The UIR is a device that enables you to control your PC with ANY remote controller you have (TV, VCR, CD or Stereo). Original hardware & software was designed by Martinus & Ties Bos. You should check their site first. There it was, now it has either moved or is unavailable. In this article you can find improved and simplified hardware scheme, software & hints for building the device. The device is very simple: minimal version uses only 3 components! So if you are not planning a big serial production you will build it on experimental (universal) circuit board. This is the most correct schema:

Page 131 of 150:   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150

Circuit-Zone.com © 2017. All Rights Reserved.
AC / DC Innveters
AM Radio
Audio Attenuators
Audio DAC
Battery Chargers
CNC Milling Devices
Counters / Frequency Meters
Fluorescent Lamps
FM Radio / Receivers
FM Transmitters
Frequency Wave Generators
Headphone Amplifiers
iPOD Hacks
LC Meter
Motor Controllers
MP3 Players
PC Circuits
Phone Circuits
PLL Circuits
Power Supplies
RC Servo Motors
Remote Control
RF Radio Frequency
Solar Circuits
Stepper Motors
Stereo Encoders
Test and Measurement
Timer Circuits
TV Transmitters
USB Circuts
USB Interface Adapters
USB Soundcards / USB Headphones
Volume Control