Electronic Projects   |   Store   |   Schematics   |   Downloads   |   Search  

Circuit-Zone.com - Electronic Projects

Camera VHF Video Transmitter
Posted on Wednesday, July 6, 2011   •   Category: TV Transmitters

This is a simple video transmitter that can transmit as far as 50 meters. This video transmitter can be used with the camera or other video sources. You can view them on VHF channel analog TV. Supply voltage to the video transmitter can use 9V battery. Transistor components that are used for a video transmitter is BC548 or you can use another type of transistor BF199. Meanwhile, other passive components used SMD type. For winding coil L1 is 5 Turns 8 mm in diameter and use wire AWG 0.3-0.5 mm.

AVR Programmer
Posted on Tuesday, July 5, 2011   •   Category: AVR

Here's AVR programmer for programming AVR microcontrollers such as the AT90S1200 via the parallel port. AVR programmer is extremely simple. IC1 provides buffering for the signals that travel from the parallel port to the microcontroller and vice versa. This is essentially everything that can be said about the circuit. The two box headers (K2 and K3) have the ‘standard’ ISP (in system programming) pinout for the AVR controllers. The manufacturer recommends these two pinouts in an attempt to create a kind of standard for the in-circuit programming of AVR microcontrollers. These connections can be found on many development boards for these controllers. The software of AVR programmer carries out the actual programming task.

RF Inductance Meter
Posted on Tuesday, July 5, 2011   •   Category: Test and Measurement

This RF inductance meter measures RF chokes in the 500 nH to 50 uH range. I needed a way to measure hand-wound RF inductors in my second lab, and since I would only be doing this occasionally, I didn't need anything fancy, and since once a friend finishes his AT90S1200-based design, I plan to make one myself, I figured I'd use this for less than a year, so I didn't want to invest a lot of time in making it . I had run across the forerunner of this circuit, one that is more sophisticated in that it has a zero adjustment and range switch, but it was limited to higher inductances. I adapted it to the components I had on hand and changed it so that it would work in the 500 nanohenry to 50 microhenry range.The original circuit was reportedly published a few years ago by the Amrican Radio Relay League, so it is with appreciation of the ARRL that I make this circuit available.

Hybrid Tube Headphone Amplifier
Posted on Monday, July 4, 2011   •   Category: Headphone Amplifiers

Here's a simple to build hybrid tube headphone amplifier built around 12AU7 / ECC82 vacuum tube. I have always been intrigued by tube amplifiers, but most DIY kits are very expensive and use very high voltage. So I decided to build an amplifier that would be inexpensive and had the least amount of parts necessary to drive a pair of 32 ohm Grado headphones. Having built several YAHA amps based on the fa-schmidt design, and a Szekeres Mosfet follower I wondered how the two would sound together. So I built the schematic into TINA-TI, a free spice based program to test circuits before the build, and the results were remarkable. Nearly 20dB of gain across 20Hz-100kHz from a 13VDC power supply. As you see in the schematic and parts list, there are less than 30 discrete components and most DIY'ers will have them as spares from other builds. I chose the 12AU7 / ECC82 vacuum tube because it can be driven with low voltage and the filament voltage is 12.6 volts, so there is no need to regulate the voltage any further. I used 1/4W resistors in the first stage and 2W in the second. The 2W resistors may be overkill but I did not want to change them later. The 20ohm resistor must be a minimum of 5W and do not use wire wound, as the inductive characteristics will distort the response curve.

Inductance Meter
Posted on Saturday, July 2, 2011   •   Category: Test and Measurement

This is inductance meter I built using 74HC14 IC. Initially I used a DMM as the display device, but on a whim I tried hooking up a moving-coil meter. To my surprise, it actually worked just fine, 1K in series was sufficient to allow a useful calibration and didn't overload the drive capabilities of the last gate in the package. I calibrated my unit for 0-100 uH, as this is the range I am generally most interested in, and it gives direct-readings on the uA scale of the meter. With the values as Dick specified, there is sufficient range to calibrate it from about 25 uH to 250 uH FSD.

Page 41 of 149:   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149

Circuit-Zone.com © 2017. All Rights Reserved.
AC / DC Innveters
AM Radio
Audio Attenuators
Audio DAC
Battery Chargers
CNC Milling Devices
Counters / Frequency Meters
Fluorescent Lamps
FM Radio / Receivers
FM Transmitters
Frequency Wave Generators
Headphone Amplifiers
iPOD Hacks
LC Meter
Motor Controllers
MP3 Players
PC Circuits
Phone Circuits
PLL Circuits
Power Supplies
RC Servo Motors
Remote Control
RF Radio Frequency
Solar Circuits
Stepper Motors
Stereo Encoders
Test and Measurement
Timer Circuits
TV Transmitters
USB Circuts
USB Interface Adapters
USB Soundcards / USB Headphones
Volume Control