Electronic Projects   |   Store   |   Schematics   |   Downloads   |   Search  

Circuit-Zone.com - Electronic Projects



LM4780 Gainclone Amplifier
Posted on Thursday, May 26, 2011   •   Category: Amplifiers


LM4780 gainclone amplifier with a design similar to the National Semiconductor BPA-200 (Bridge/Parallel Amplifier) which uses 4x LM3886 per channel and an input buffer. The total effect is (2x LM3886's paralleled amplifiers) 2x Bridged and should give approx 225 watts into 8 ohm and 335 watts into 4 ohm speakers when used with a sufficient power supply.


LM3875 Gainclone Amplifier
Posted on Thursday, May 26, 2011   •   Category: Amplifiers


Gainclone amplifiers have very few components and this one is based on the National Semiconductor LM3875 IC. The PCBs and components are very simple and quick to make, only took about 20 mins to assemble both amps and rectifier board. DC offset was about 80mV on one channel and about 40mV on the other. I used the optional Ci capacitor in the national datasheet for the IC which reduced it to between 0-4mV: This is the capacitor I chose, its an Elna Starget (expensive). The case was MUCH more time consuming and difficult to make though. I bought all the aluminium from a scrap metal yard including the heatsink. I got my aluminium panels cut at a sheet metal shop as I cant make straight cuts with a hack saw.


1.5V LED Flasher
Posted on Wednesday, May 25, 2011   •   Category: LED


The circuit is a LED flasher to light LED with single 1.5V battery is usually based on a blocking oscillator or a charge-pumped voltage doubler.This is another (but similar to charge pump) way to flash LED with 1.5V battery. The base-R voltage becomes nearly double the Vcc while making oscillation timing of astable multivibrator. LED can be flashed if it is attached aside. Since the LED discharges the C electricity, oscillator timing is shortened.


12V Power Supply - 30A
Posted on Wednesday, May 25, 2011   •   Category: Power Supplies


This is high current 12V power supply. Power supply uses LM7812 IC and can deliver up to 30A to the load by the help of the TIP2955 pass transistors. Each transistor can handle up to 5A and six of them result an total output current of 30A. You can increase or reduce the number of TIP2955s to get higher or lower current outputs. In this design the IC delivers about 800mA. A 1 amp fuse is connected after the LM7812 to protect the IC against high current transients. The transistors and the 12V regulator IC both require adequate heatsinking. When the load current is high, the power dissipation of each transistor also increases so excess heat may cause the transistors to fail. Then you will need a very large heatsink or fan cooling. 100Ω resistors are used for stability and prevent current swamping as the tolerances of dc current gain will be different for each transistor. The bridge rectifier diodes must be capable of passing at least 100 amps.


Arduino Sinewave Generator
Posted on Wednesday, May 25, 2011   •   Category: Arduino


Arduino Sine wave Generator using the direct digital synthesis Method. Here we describe how to generate sine waves with an Arduino board in a very accurate way. Almost no additional hardware is required. The frequency range reaches form zero to 16 KHz with a resolution of a millionth part of one Hertz! Distortions can be kept less than one percent on frequencies up to 3 KHz. This technique is not only useful for music and sound generation another range of application is test equipment or measurement instrumentation. Also in telecommunication the DDS Method is useful for instance in frequency of phase modulation (FSK PSK).

The DDS Method (digital direct synthesis). To implement the DDS Method in software we need four components. An accumulator and a tuning word which are in our case just two long integer variables, a sinewave table as a list of numerical values of one sine period stored as constants, a digital analog converter which is provided by the PWM (analogWrite) unit, and a reference clock derived by a internal hardware timer in the atmega. To the accumulator , the tuning word is added, the most significant byte of the accu is taken as address of the sinetable where the value is fetched and outputted as analog value bye the PWM unit. The whole process is cycle timed by an interrupt process which acts as the reference clock. Further details of the DDS Method are described in web of course.


Page 49 of 149:   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149

Circuit-Zone.com © 2017. All Rights Reserved.
AC / DC Innveters
AM Radio
Amplifiers
Antennas
Arduino
Audio Attenuators
Audio DAC
AVR
Battery Chargers
CNC Milling Devices
Counters / Frequency Meters
Fluorescent Lamps
FM Radio / Receivers
FM Transmitters
Frequency Wave Generators
Headphone Amplifiers
iPOD Hacks
LC Meter
LED
Miscellaneous
Motor Controllers
MP3 Players
Oscillators
Oscilloscopes
PC Circuits
PCB
Phone Circuits
PIC
PLL Circuits
Power Supplies
RC Servo Motors
Remote Control
RF Radio Frequency
Robots
Sensors
Solar Circuits
Stepper Motors
Stereo Encoders
Test and Measurement
Timer Circuits
TV Transmitters
USB Circuts
USB Interface Adapters
USB Soundcards / USB Headphones
Video
Volume Control