Electronic Projects   |   Store   |   Schematics   |   Downloads   |   Search  

Electronic Schematics



Electronic Fuse
Category: Power Supplies

This is adjustable elctronic fuse that can be used to protect power supplies from short circuits or can be also used to limit the current usage. It can be adjusted for currents from 100mA up to 4.3A.




0-28V 6-8A Power Supply (LM317, 2N3055)
Category: Power Supplies

This is an easy to make power supply which has stable, clean and regulator 0-28V 6/8 Amp output voltage. By using two 2N3055 transistors we become more then 2 times the amount of amps then the power supply delivers, making it real though to brake ;). Although you could use this design to deliver 20 amps (with almost no modifications and with a proper transformer and a huge heat sink with a fan), I did not needed such much power. Make sure you mount them on a huge heat sink, as the 2N3055 transistors can get very hot at full load.




0-30V 20A High Power Supply with LM338
Category: Power Supplies

This is High current and Adjustable Volt 0 to 30V 20A. It easy circuit and nice circuit, Because use IC LM338 and IC 741. Volt Output adj by VR1-1K. IC LM338 to hold heat-sink. Transformer is 20A up.




0-30V Mini Bench Power Supply
Category: Power Supplies

After many years of employing this ugly and clumsy bench power supply, I decided it was time to build something better, smaller and nice looking. It began as a variable power supply based on an LM338 5A voltage regulator and external power adapter. LM338's Data Sheet has several very helpful application notes and circuits. I chose one that illustrated variable output and included protection diodes. Diodes are included to protect the regulator from damage in case the input is accidentally shorted to ground. This is a distinct possibility if using jumpers to attach it to the power supply. Also the output of station supply may be shorted if some other device fails. Without the diodes, if this happens, the capacitors will dump their charge back through the regulator. Since the current spike may be many amps, the regulator may fail. The diodes steer the current around the regulator and into ground, thereby protecting it from damage. With adequate input the LM338 makes a fabulous variable power supply. This small supply is user friendly and fits nicely on my cluttered bench.




1.2 - 12V / 1A Low Voltage LED Indicator Power Supply with LM317
Category: Power Supplies

This is a 1.2 - 12 V, max 1A power supply with a low voltage indicator LED. The indicator part incluedes three diodes and one LED. For example you are charging a battery, you can observe the charge status at that moment. Another advantage of this circuit, when the drawn current exceeds 1A (practically 0.85A), the current protector in LM317 intervens and LED indicator warns you about the very low output voltage. Be careful while choosing the transformer. Most of the products are specified as 10VA but their outputs are not as said. Another good property of this circuit is the mains noise does not pass to the DC part.




1.2-36V 5A Adjustable Power Supply with LM317
Category: Power Supplies

This is very simple 1.2 - 36V adjustable bench power supply with 5A of output current. Max input voltage is 37V and output is adjustable via potentiometer between 1.2 up to 36 volts. TIP147 PNP darlington transistor boosts the current of LM317 from 100mA to 5A. LM317 is the most useful and inexpensive adjustable regulator and for this circuit you can also use LM317L that can give 100mA, that's enough for transistor bias. D1 and D2 are protection diodes because when you turn the circuit off the output capacitors are discharging and can damage the transistor or regulator.




1.3 - 32 V / 5A Power Supply with Short Circuit Protection with LM338
Category: Power Supplies

This is a LM338 based power supply which is not complicated and easy to build. I am using the supply for a long time, have no problem yet. Only current adjust is missing but I overcome this situation by using an LCD panel ampermeter. There is no PCB for the circuit. I took a 3x16 copper plate and strip the unused areas by a knife. If you want you can use analog meters instead of LCD panels.




1.5V - 30V 1.5A LM317 Variable Power Supply
Category: Power Supplies

This is a basic universal variable Power Supply voltage regulator circuit using an LM317, 3-terminal regulator in a TO-220package. The Universal Power Supply output voltage can be set to anywhere in the range 1.5V to 30V by selecting two resistances. By using a potentiometer, R2, as one of the resistors you can dial up the output voltage wanted. Either AC or DC input can be supplied to the PCB via a socket or terminal block. Connection can be either way around. This is because we have provided a bridge rectifier on board. The input DC voltage to the regulator must be at least 2.5V above the required output voltage. An off/on switch is provided. For many applications (say 12V at 60mA) a heat sink will not be necessary. The LM317 will provide slightly higher output voltages than 30 volts. However, for most hobbyists over 30V will not be needed. So to make a small PCB we have used some electrolytic capacitors rated to 35 volts. To be safe for continuous operation the maximun input DC voltage to the regulator should not be over 33V. With a 2.5V to 3.0V drop across the regulator this will give a regulated output of 30V. You can draw up to 1.5A from the LM317. If you need higher then use an LM338T rated to 5A.




10A 1-30V Variable Power Supply with LM317
Category: Power Supplies

Here is a simple and economical 10A variable power supply with 1.2-30V. LM317 have been used to drive 3 NPN TIP41C transistors (or three 2N3055). Nothing to say about the project, it is really simple. The main supply must be connected to a rectified source (transformer + 20-30A bridge rectifier). For Q1,2 and 3 can be used any power TO220 transistor (TIP132C,TIP41C etc) or three external 2N3055 transistors.




12 Volt 30 Amp PSU
Category: Power Supplies

Using a single 7812 IC voltage regulator and multiple outboard pass transistors, this power supply can deliver output load currents of up to 30 amps. This circuit is a fine example of Kirchoff's current and voltage laws. To summarise, the sum of the currents entering a junction, must equal the current leaving the junction, and the voltages around a loop must equal zero. For example, in the diagram above, the input voltage is 24 volts.




12V 2A Linear Power Supply
Category: Power Supplies

As you might expect, I have several power supplies that have more than enough capacity to power my new KN-Q7 transceiver. However, my largest power supply is normally connected to my main 100W PEP SSB transceiver. It is capable of 20A and more, but itís not easy to connect other equipment to it. I also have a smaller 8A power supply, but I use this to power some other VHF and UHF transceivers. In short, I wanted a simple power supply which I could dedicate to this new transceiver.




12V Dual Power Supply
Category: Power Supplies

12V dual power supply has symmetrical voltage output +12V and -12V with limited current to 100mA. It has been built to power three OPA627 opamps of Audio DAC I am building with PCM1792 & PCM1794 chips. Circuit has on the primary side only fuse. I couldn't find smaller than 50mA. We can connect power cord directly to the X1 connector or via power switch on the chassis. On the secondary side of transformer are connected two fuses 100mA and after them is bridge rectifier. For filtering of rectified voltage there are C1 and C2. Next are positive and negative voltage regulators 78L12 and 79L12 with decoupling capacitors C3 to C6 close to regulators. Next are small filter capacitors and also signaling LEDs connected via resistors. Output voltages are connected to 3 pin connector. For signaling of presence of voltage is enough only one LED. We can also use 2 pin connectors for LED connecting.




12V Power Supply - 30A
Category: Power Supplies

This is high current 12V power supply. Power supply uses LM7812 IC and can deliver up to 30A to the load by the help of the TIP2955 pass transistors. Each transistor can handle up to 5A and six of them result an total output current of 30A. You can increase or reduce the number of TIP2955s to get higher or lower current outputs. In this design the IC delivers about 800mA. A 1 amp fuse is connected after the LM7812 to protect the IC against high current transients. The transistors and the 12V regulator IC both require adequate heatsinking. When the load current is high, the power dissipation of each transistor also increases so excess heat may cause the transistors to fail. Then you will need a very large heatsink or fan cooling. 100Ω resistors are used for stability and prevent current swamping as the tolerances of dc current gain will be different for each transistor. The bridge rectifier diodes must be capable of passing at least 100 amps.




13.8V 10A Power Supply
Category: Power Supplies

As is commonly the case, this supply was born of necessity. There is absolutely nothing special about the circuit, except that as shown, it is quite capable of up to 20 Amps intermittently or 10A continuous. Simply use a bigger transformer, bridge rectifier and more capacitors and output transistors to get more current. The basic circuit should be good for up to 100A or so, using a 5A TO3 regulator IC, but it can obviously be increased further (if you really do need a 500A supply!).




13.8V 40A Switching Power Supply
Category: Power Supplies

Amateur radio has been somewhat slow to accept switching power supplies for powering communication equipment. This is a pity, because "switchers", as they are often called, offer very attractive features, like small size, low weight, high efficiency, and low heating. True, they are generally more complicated than linear power supplies, but this is easily compensated by the fact that they can be built for a lower cost. Some early switchers produced an objectionable amount of RF noise, bringing the whole switching technology into bad reputation. But by proper design techniques and careful EMI filtering it is possible to build very quiet switchers. In this article I will describe the construction of a switching power supply designed to power a complete ham station, with several radios and accessories. This power supply produces 13.8V regulated to better than 1%, at a continuous load current of up to 40A. It has current limiting, making it appropriate for direct connection to a 12V backup battery. If the current limit potentiometer is turned up, the power supply can deliver up to 60A on an intermittent basis, while maintaining regulation. No minimum load is required. The ripple on the output is about 20mV, and the efficiency is 88%. A cooling fan operates depending on the average current drawn, and a tricolor LED tells you if the voltage is normal, too high or too low. It produces no detectable RF noise at any frequency higher than the main switching frequency of 50kHz (I checked it with an antenna wire looped around the operating power supply, tuning my TS450 from 30kHz to 40MHz). And you get all this in a box that measures just 306 x 150 x 130mm, including all projections, and weighs only 2.8kg!




13.8V, 40A Switching Power Supply
Category: Power Supplies

Amateur radio has been somewhat slow to accept switching power supplies for powering communication equipment. This is a pity, because "switchers", as they are often called, offer very attractive features, like small size, low weight, high efficiency, and low heating. True, they are generally more complicated than linear power supplies, but this is easily compensated by the fact that they can be built for a lower cost. Some early switchers produced an objectionable amount of RF noise, bringing the whole switching technology into bad reputation. But by proper design techniques and careful EMI filtering it is possible to build very quiet switchers.




15V / 28V 4A Transmitter Power Supply
Category: Power Supplies

Power supply used for professional FM broadcasting transmitter.




3.3V and 5V Power Supply
Category: Power Supplies

I normally use a USB port as power supply for my projects but some ICs need 3.3V instead of 5V. Therefore I decided to build this small dual power supply. Power supply uses two low dropout voltage regulators that provide up to 800mA of output current and come in TO-220 package. LD1117V33 is used for 3.3V and LD1117V50 for 5V. Input voltage is 6V-15V and both regulators can be switched on/off individually.




30V 10A Variable Bench Power Supply
Category: Power Supplies

Presented here is a circuit for 30V 10A variable bench power supply that offers variable voltage and current adjustment. Power supply is based around a LM723 voltage regulator chip and has current limiting. I often end up with the power clips shorting out on the bench and with no problems. I have had this circuit in use now for over 20 years and has never let me down and is one of the most handiest gadgets i have built. The 2N3055 transistors are a well proven high current transistor. More 2N3055 transistors can be connected together for more output current. The transistors will need to be mounted on a good size heatsink.




30V/4A Adjustable Bench Power Supply
Category: Power Supplies

This is a high quality bench power supply with adjustable output voltage from 0 to 30V and adjustable output current from few miliamperes to 4 amperes. Built-in electronic output current limiter that effectively controls the output current makes this power supply indispensable in the experimenters laboratory as it is possible to limit the current to the typical maximum that a circuit under test may require, and power it up then, without any fear that it may be damaged if something goes wrong. There is also a visual indication that the current limiter is in operation so that you can see at a glance that your circuit is exceeding or not its preset limits.




40A Power Supply Unit
Category: Power Supplies

Capable of running at full power at 100% duty cycle.




40V 2A LM317 & TIP42 Power Supply
Category: Power Supplies

A very good and powerful Regulated Power Supply section was implemented by simply adding a PNP power transistor to the excellent LM317T adjustable regulator chip. In this way this circuit was able to deliver much more than the power required to drive two Mini-MosFet amplifiers to full output (at least 2Amp @ 40V into 4 Ohm load) without any appreciable effort.




50V 3A Stabilized Power Supply with 2N3055
Category: Power Supplies

Many times we needed a stabilized, together regulated power supply and high relatively output voltage. These specifications him it cover our circuit. It 's a circuit that can give in his exit + 40V until + 60V 3A, with simultaneous stabilization. The materials that use is very simple and will not exist difficulties in the manufacture, is enough you are careful certain points. 1 ] For output voltages smaller of + 50V until + 40V, the Q1 is hot enough, so that it needs one big heatsink.




50V Bench Power Supply
Category: Power Supplies

An 50v bench power supply can be made using electronic diagram below which is designed using LM10 op amp and 2n3055 transistors. This LM10 2n3055 50v bench power supply allows an output voltage regulation in a range between 0 and 50 volts and the output current can be limited to a maximum of 2A. Output voltage increases linearly with the amount of resistance potentiometer P1, while the current can be adjusted linear using potentiometer P3. Potentiometer P2 serves to regulate maximum output current (maximum value is 2A).




5V Power Supply With Overvoltage Protection.
Category: Power Supplies

For circuits using TTL ICs the supply voltage is a great concern and a slight increase in supply from the rated 5V may damage the IC. Using fuses alone does not solve the problem because a fuse may take several milliseconds to blow off and thatís enough time for the IC to get damaged.




Add-on Current Limiter
Category: Power Supplies

This circuit allows you to set a limit on the maximum output current available from your PSU. It's very useful when you power-up a project for the first time - or carry out a soak-test. By setting an upper limit on the current available from your PSU - you can protect both your power supply - and any device connected to it. It offers a simple and cheap alternative to the Current Limiting Power Supply.




Adjustable Bench Power Supply
Category: Power Supplies

Iíve built myself my own universal, adjustable bench power supply. This isnít strictly astro stuff but the main reason I built it is to experiment with TFT backlight panels that I use for my lightboxes. I needed 5V and 12V to play around with the inverter boards and figure out their pin-out. I considered buying a bench power supply. But prices were too high, especially for ones with adjustable voltages. So I decided to build my own. This one has 4 outputs. One 5Volt, one 12V and two individually adjustable outputs going from about 1.5V to 19.5V. Each can draw up to 1.5Amp with a total of 3.5A for all together. The input is a standard replacement laptop power supply 20V, 3.5A. With a stronger external power supply the total output current can be higher, up to 1.5A per output. But currently the 3.5A is more than enough. Each of the adjustable outputs has its own little voltmeter built in. The fixed voltage regulators are based on a 7805 for the 5V and a 7812 for 12V. The two adjustable regulators are based on one LM317 each.




Adjustable Bench Power Supply
Category: Power Supplies

If you are starting to learn electronics variable bench power supply is the first thing you should build to power your projects. This simple power supply is built around the LM317/LM338/LM350 linear voltage regulator. The LM317 is one of the most popular voltage regulators on the market, and for good reason. It is very simple to use and requires very few external components. LM317/LM338/LM350 regulators provide a stable and reliable output voltage adjustable between 1.25V and 37V. The short circuit protection is also built right in the voltage regulator.




Boosted LM317/LM337 Regulators
Category: Power Supplies

Transistors types have been altered to ones that are more readily available.




DIY Bench Power Supply
Category: Power Supplies

This is a bench power supply with regulated DC outputs -12V, -15V, +5V, +12V, +15V, and variable and one +35VDC unregulated output. I based this bench supply almost exclusively upon Andrew Kilpatrick's design. I did add a few things, but it's essentially the same and I am not writing here to claim any shred of originality. I spent somewhere around 80$ US on the project (including the GIANT transformer), which isn't bad compared with commercial supplies boasting similar features. Please note that I DID find a few minor errors in Kilpatrick's schematic, which have been fixed here. For details, read Kilpatrick's original page.




DIY Power Supply for Home Server
Category: Power Supplies

I'm replacing my old power-hog home server with a new one based on the Intel D945GSEJT mainboard. This board is essentially a netbook platform that's been "desktopified". Among it's weirder points are that it uses the Mobile 945GSE chipset, SODIMM ram, 44PIN IDE, and that it runs off a single 12V supply. The reason I chose this board is that it consumes 13W in idle and 18W under full CPU and GPU load which is pretty much the lowest power consumption one can get with an Atom system (excluding some server-specific boards that were beyond my budget). Not wanting to use an ATX PSU I've decided to build a completely new power supply for the board. Not having to bother with all the voltages needed for ATX makes this a lot easier. I've decided to make a high-amp 12V supply, and a 5V supply capable of driving two HDDs.




DIY USB 5V Solar Power Pack
Category: Power Supplies

Solar energy is renewable, free, widely available and clean form of energy. It is considered as a serious source of energy for many years because of the vast amounts of energy that is made freely available, if harnessed by modern technology. Many people are familiar with so-called photovoltaic cells, or solar panels, found on things like spacecraft, rooftops, and handheld calculators. The cells are made of semiconductor materials like those found in computer chips. When sunlight hits the cells, it knocks electrons loose from their atoms. As the electrons flow through the cell, they generate electricity. In this project, we are building a power bank which harvests energy by using a solar panel. The energy gained by the solar panel is stored in a LiPo battery. Then the battery is used to supply a stable 5V which is used by USB gadgets. The power bank can also be charged by an external 5V source. The best thing for this power bank during day that you donít need to remember to charge it. It charges itself by using the sunlight and you donít come up with an empty bank.




DIY USB Power Supply
Category: Power Supplies

Here is a quick and easy way to make an USB charger / power supply powered by the wall outlet. This can be used to charge / power a PSP, iPod or any other USB device. First you need to acquire a regulated 5 vdc wall wart rated at 500ma or higher. The one I used is from an IoMega Zip drive. It has a switching regulator with an output of 5vdc @ 1amp. This is a cool way of making an old wall-wart (plug in power supply) into a useful USB power supply and requires very few extra components.




Dual Polarity Power Supply
Category: Power Supplies

This dual polarity power supply is easy to build, requires few parts, and is adjustable from 0-15 volts. It is great for powering op amp circuits, as well as other circuits that require a dual supply voltage.




Dual USB Charger With Switching Regulator
Category: Power Supplies

This is a portable USB Charger. It uses a high efficiency switching regulator that runs at 85 - 94% efficiency depending on input voltage and load. It takes an input voltage from 8 to 16 volts and can run from anything from a 9 volt battery to a car battery. It has 2 USB ports and easily charges 2 power hungry devices at once.




Electronic Fuse
Category: Power Supplies

Full short-circuit and overcurrent protection is given by this circuit suitable for workbench applications in technical schools and laboratories where there is a need to work directly with the mains. Additional features are a clearly visible red lamp indicating that the voltage is present, good isolation of the output circuit when the unit is off, only a few millivolts were measured with no load, current threshold adjustable over a limited range and the possibility of remote cutout: the 6V from the secondary can be taken anywhere, normally where you are working, even far away from the protection circuit.




Electronic Fuse for DC Short Circuit Protection
Category: Power Supplies

This is an electronic fuse that protects the load against short circuit. Relays must be choosen with a voltage value equals to the input voltage. Don't omit using the 100uF capacitor with appropriate voltage value with respect to the input voltage. If you can't provide, you can use C106 instead of BRX46. You can adjust the current with using 10K potentiometer. If you will use the fuse with very high currents, lower the 0R6 5W resistor value (ex. 0R47, 0R33, 0R22 or 0R1). Watt value of the resistor should be increased also.




High Current LM317 Regulated Power Supply
Category: Power Supplies

The high current regulator below uses an additional winding or a separate transformer to supply power for the LM317 regulator so that the pass transistors can operate closer to saturation and improve efficiency. For good efficiency the voltage at the collectors of the two parallel 2N3055 pass transistors should be close to the output voltage.




High Current Power Supply
Category: Power Supplies

Since my page was first posted, I have received a number of emails asking about a high current power supply. I looked around, but couldn't find one that was suitable. So, I designed this. It is a linear supply, which might have a few of you rolling your eyes, but it takes very few parts, is simple to build and can supply huge currents.




High Current Regulated Supply
Category: Power Supplies

Current of LM317 voltage is increased by using an additional power transistors.




High Current Regulated Supply By LM317
Category: Power Supplies

The high current regulator below uses an additional winding or a separate transformer to supply power for the LM317 regulator so that the pass transistors can operate closer to saturation and improve efficiency. For good efficiency the voltage at the collectors of the two parallel 2N3055 pass transistors should be close to the output voltage. The LM317 requires a couple extra volts on the input side, plus the emitter/base drop of the 3055s, plus whatever is lost across the (0.1 ohm) equalizing resistors (1volt at 10 amps), so a separate transformer and rectifier/filter circuit is used that is a few volts higher than the output voltage.




How Do Lead Acid Batteries Work
Category: Power Supplies

Lead Acid batteries have changed little since the 1880's although improvements in materials and manufacturing methods continue to bring improvements in energy density, life and reliability. All lead acid batteries consist of flat lead plates immersed in a pool of electrolyte. Regular water addition is required for most types of lead acid batteries although low-maintenance types come with excess electrolyte calculated to compensate for water loss during a normal lifetime. Lead acid batteries used in the RV and Marine Industries usually consist of two 6-volt batteries in series, or a single 12-volt battery. These batteries are constructed of several single cells connected in series each cell produces approximately 2.1 volts. A six-volt battery has three single cells, which when fully charged produce an output voltage of 6.3 volts. A twelve-volt battery has six single cells in series producing a fully charged output voltage of 12.6 volts.




Lab Power Supply
Category: Power Supplies

This is a high quality power supply with a continuously variable stabilised output adjustable at any value between 0 and 30VDC. The circuit also incorporates an electronic output current limiter that effectively controls the output current from a few milliamperes (2 mA) to the maximum output of three amperes that the circuit can deliver. This feature makes this power supply indispensable in the experimenters laboratory as it is possible to limit the current to the typical maximum that a circuit under test may require, and power it up then, without any fear that it may be damaged if something goes wrong. There is also a visual indication that the current limiter is in operation so that you can see at a glance that your circuit is exceeding or not its preset limits.




Laboratory Power Supply
Category: Power Supplies

1.2V - 12V with regulated current limiter through resistors




Laboratory Power Supply 0-30 Volt
Category: Power Supplies

The linear laboratory power supply, shown in the schematic, provides 0-30 volts, at 1 amp current, using a discrete transistor regulator with op-amp feedback to control the output voltage. The supply was constructed in 1975 and has a constant current mode that can be used to recharge batteries. With reference to the schematic, lamp, LP2, is a power-on indicator. The other lamp (lower) lights when the unit reaches its preset current limit. R5, C2, and Q10 (TO-3 case) operate as a capacitor multiplier. The 36 volt zener across C2 limits the maximum supply voltage to the op-amps supply pins. D5, C4, C5, R15, and R16 provide a small amount of negative supply for the op-amps so that the op-amps can operate down to zero volts at the output pins (pins 6). A more modern design might eliminate these 4 components and use a CMOS rail-to-rail op-amp. Current limit is set by R3, D1, R4, R6, Q12, R10, and R13 providing a bias to U2 that partially turns off transistors Q9 and Q11 when the current limit is reached. R4 is a front panel potentiometer that sets the current limit, R22 is a front panel potentiometer that sets the output voltage (0-30 volts), and R11 is an internal trim-pot for calibration. The meter is a 1 milliamp meter with an internal resistance of 40 ohms. Switch S1 determines whether the meter reads 0-30 volts, or 0-1 amp.




Laboratory Power Supply 24V 4A
Category: Power Supplies

Here's a laboratory power supply with output voltage continuously adjustable from 0 V to 24 V DC, remote voltage sense capability (Sense internal/external), output current limit is continuously adjustable from 0.04 A to 4 A and output current can be limited continuously or output shut down (Limit/cut).

Remote sensing means there are two additional wires which sense the delivered voltage at the load and compensate for any voltage drop along the cables which carry the delivered current. This improves voltage regulation at the load considerably but requires two additional wires for the sensing. A switch allows internal sensing at the output terminals for simpler operation when remote sensing is not required.

I like to have a switch which lets me choose between limiting the output current continuously (useful for charging batteries), or shutting down the output if the current limit is reached (useful for protecting equipment being repaired).

Another thing I like to have in the power supplies I build is a push button switch which multiplies the current scale by a factor of 10. That way one can momentarily press the button and get a much more precise reading of current. By making the switch a push button one cannot forget to turn the function off and risk the instrument being damaged when a large current is put through it. In this case and for now I am not installing this function because I am using the instrument's shunt resistor to sense the current for the electronic control system and I would have to change several things. I might do this in the future.




LM317 Adjustable Power Supply
Category: Power Supplies

Here's how to build your own adjustable power supply based on LM317. The IC LM317 is so versatile that an almost unlimited number of different, small, high grade power supply circuits can be built using it. The configurations can be introduced for different applications for upgrading an existing unit with features that would virtually make it indestructible. A few useful application circuits using IC LM317, collected from National Semiconductor's PDF datasheet are meticulously explained in this section with the help of the relevant circuit diagrams. All the circuits discussed below require an unregulated input voltage (max. 35 Volts) from any standard transformer/bridge/capacitor network.




LM317 Overvoltage Protection
Category: Power Supplies

This is an add-on over voltage protection circuit for LM317 voltage regulator. It is a voltage regulator that allows a 6V portable supply to be derived from the 12V car battery. You can add a 6.2V zener diode and a LED to warn you when the input supply is overvoltage. If you could find a relay that would operate from 6.2V right up to 12v that you could connect in such a way that if over voltage occurred, then the relay would automatically switch off the output preventing damage to any connected equipment. Such a relay would be quite difficult to find, so I designed this, it is a simple two transistor circuit which will switch off the output should the voltage raise above 6.2v this can be changed by selecting a different value of zener diode.




LM317 Power Supply Circuit
Category: Power Supplies

This is a DC power supply circuit using the LM317T voltage regulator IC, which is the IC of this type is very popular among electronics hobby. Parameter to regulate the output DC voltage carried by the LM317 circuit with a maximum current of 1A. LM317 output voltage of this circuit is 6V DC, source from the stress out of the 12V CT AC transformer, and then converted to DC half-wave voltage by diodes D1-D2, and filtered by C1 capacitor. The transformer is used should be about 1-2A. Output voltage of 6V DC power supply circuit is determined by the value of R1 and R2. Diodes D3-D4 on the LM317 voltage current circuit to protect poor return for LM317 circuit IC. As for the other capacitors C3-C4 is used to refine the output voltage, and complete power supply circuits.




LM317 Variable Power Supply
Category: Power Supplies

Here's variable power supply voltage regulator circuit based around LM317 that provides fully regulated output voltage between 1.25 and 37v with current up to 1A. In many cases we can manage with a suitable fixed voltage regulator such as 5v or 12v, but occasionally we need a non-standard voltage. In these circumstances the LM317 range of regulators proves to be very useful.




One Button On-Off Switch with 4093 and IRFZ44
Category: Power Supplies

The load is driven by the MOSFET IRFZ44 and 4093 AND gates are used in the circuit. The output of the 4093 IC drives the MOSFET. Only one button allows you to change the on-off state of the electronic circuits in which you use this switch. The circuit schematics is above. Click image to see the larger schematics diagram.




Power Supplies
Category: Power Supplies

There are many types of power supply. Most are designed to convert high voltage AC mains electricity to a suitable low voltage supply for electronics circuits and other devices. A power supply can by broken down into a series of blocks, each of which performs a particular function. Each of the blocks is described in more detail below:

Transformer - steps down high voltage AC mains to low voltage AC.

Rectifier - converts AC to DC, but the DC output is varying.

Smoothing - smooths the DC from varying greatly to a small ripple.

Regulator - eliminates ripple by setting DC output to a fixed voltage.




Precise Low Voltage Power Supply
Category: Power Supplies

This power supply eliminate voltage loss on current meter. Will be designed for measure on low voltage DC/DC converters (e.g. LED lamps powered from single NiCd/NiMH cell)




Repairing Switching Power Supply
Category: Power Supplies

Modern power supplies are known as "switching regulator power supplies." In most switching supplies, the 110 volt AC input is first rectified by two diodes and filtered by a pair of capacitors. This creates two high- voltage sources; one positive and the other negative. A pair of transistors is then used to switch these high voltage supplies across the primary winding of a transformer. This switching action is very fast. A typical switching speed is around 40,000 cycles per second or 40KHz. An integrated circuit is commonly used to control the transistors. This IC not only controls the speed at which the transistors are switched, but also controls the amount of time that each transistor is energized. The output voltage of the power supply is determined by the "on" time of the transistors. If the transistors are keep on for a longer period of time, the output voltage of the supply will rise, while shorter times lower the output voltage. This is known as "pulse-width modulation."




Simple +/- 22Voltage Regulator
Category: Power Supplies

The following diagram is provided for anyone who would like to include a voltage regulator but who does not want to use one of the ic versions (as in the updated, regulated supply for the 1996 design). This is a very basic regulator circuit, without any additional features such as foldback current limiting, and does not have the same performance as an ic regulator.




Solar Charger for USB Devices
Category: Power Supplies

As the world around us becomes more and more environmentally conscious, alternative energies such as solar power are becoming more and more popular. The following solar charger is very simple and inexpensive to build and could be used to charge cell phones, tablets and other USB devices. 6V solar panel could be easily salvaged from outdoor garden lights. Solar charger uses REG113-5 efficient low dropout regulator that only loses 250mv of forward voltage. Linear style regulators such as a LM7805 or LM317 type voltage regulators lose as much as 2-3V and can not be used in this application. Optionally you may also add four-resistor voltage divider to charge an iPhone or iPad.




Split Laboratory Power Supply
Category: Power Supplies

Split power supply provides a stable regulated bipolar voltage in the range Ī1.5V to Ī17V. It is based on LM317/LM337 linear voltage regulators that also have a short circuit protection. Most parts are easily accessible, including a 6"x3"x2" project box, 12V 1.2A center tap transformer, pots, knobs, etc. Power supply schematic shows how to wire LM317/LM337 to get +/- split voltage output.




Stabilized Power Supply With Short Circuit Protection
Category: Power Supplies

Here is an efficient 4-stage stabilized power supply unit for testing electronic circuits. It provides well regulated and stabilized output, which is essential for most electronic circuits to give proper results. The circuit provides an audio- visual indication if there is a short circuit in the PCB under test, so the power supply to the circuit Ďunder testí can be cut-off immediately to save the valuable components from damage.




The Capacitance Multiplier
Category: Power Supplies

The power supply for the original 1969 JLH design included a form of capacitance multiplier to reduce the amount of voltage ripple on the supply rail. The capacitance multiplier circuit has been developed further, by Rod Elliott of Elliot Sound Products, and the results published as Project 15 at the ESP Audio Pages. The modified circuit is suitable for both the original 1969 JLH amplifier (using only the positive half of the circuit) and the 1996 update. The design considerations for the capacitance multiplier, its benefits, and a comparison with voltage regulators are included in the Project article.




Transformerless Power Supply
Category: Power Supplies

Simple, low cost and easy to build power supply. Ideal for applications that doesnít require too much power. It can provide power to circuit that uses less than 100mA without any problem. The disadvantage of this circuit is the danger of an electrical shock, so it cannot be used if the circuit is in contact with the user. The voltage supplied by this is determined by the zener diode.




USB Battery Pack
Category: Power Supplies

This project is able to power a USB device using two standard AA batteries and an electronics circuit. The circuit is based on LT1073 DC/DC converter to convert the 3V to 5V needed by USB. In that way it can power the USB device on the go.




Variable Laboratory DC Power Supply
Category: Power Supplies

Voltage range: 0.7 - 24V Current limiting range: 50mA - 2A A Variable DC Power Supply is one of the most useful tools on the electronics hobbyist's workbench. This circuit is not an absolute novelty, but it is simple, reliable, "rugged" and short-proof, featuring variable voltage up to 24V and variable current limiting up to 2A. Well suited to supply the circuits shown in this website. You can adapt it to your own requirements as explained in the notes below.




Variable Voltage / Current PS
Category: Power Supplies

This regulated power supply can be adjusted from 3 to 25 volts and is current limited to 2 amps as shown, but may be increased to 3 amps or more by selecting a smaller current sense resistor (0.3 ohm). The 2N3055 and 2N3053 transistors should be mounted on suitable heat sinks and the current sense resistor should be rated at 3 watts or more.




Workshop Power Supply
Category: Power Supplies

With a maximum capacity of 20 volts and 1 amp, it will supply most of your projects, it's greatest quality is the protection all your projects, it is capable of limiting the maximum current to as low as 1mA, saving your ICs and transistors in case of an accidental short circuit during the experimenting period of your projects. It is also an excellent battery charger.




Circuit-Zone.com © 2017. All Rights Reserved.
FM Transmitters
PLL Synthesizers
Stereo Encoders & Decoders
Antennas
FM Receivers
Audio / Amplifiers
Power Supplies
AC/DC Inverters AC/DC Converters
Battery Chargers
Remote Control
PC Related
Test & Measurement
PIC / ATMEL / AVR
USB Circuits
Telephone Related
LED
Miscellaneous Circuits
Stepper Motors