HOME   |   STORE   |   SCHEMATICS   |   DOWNLOADS   |   CONTACT  

Electronic Schematics



iPOD - MP3 Player Charger

Portable iPod charger that you can use while away from your computer. The circuit is based around an MC34063 switchmode regulator. This has high efficiency so that there is very little heat produced inside the box, even when delivering its maximum output current. The circuit is more complicated than if we used a 7805 3-terminal regulator but since the input voltage could be 15V DC or more, the voltage dissipation in such a regulator could be 5W or more at 500mA. and 5W is far too much for a 7805, even with quite a large heatsink.




Atmel Solar Panel Battery Charger

Batwatch is a simple monitor for a solar panel battery charger, using an Atmel ATtiny13V. It periodically measures the charge current and battery voltage, and shows them by blinking two LEDs. I built this circuit into the plug of a VW solar charger panel that is used to prevent a discharge of the battery when a car is not used for some time. A modern car contains a large amount of electronics, and a quiescent current of 40-50mA (about 1Ah per day!) is considered "normal".




Automatic Battery Charger

The following automatic battery-charger design is created with a circuit that could qualify as the simplest window comparator ever built around a single transistor. It starts charging when the battery voltage drops beyond a preset value, and it stops when an upper preset voltage is attained. With the help of a precise variable voltage supply, the upper and lower voltage levels were set. The normally connected (NC) lead of the relay isn't joined to the 15-V dc supply, which blocks this voltage from passing to the battery leads. This will accurately set the upper and lower levels. But the charging supply of 15 V dc was connected to the circuit.




Automatic Battery Charger

Here is a simple battery charger circuit intended for 12 Volt gell-type battery. Current is limited by the 7805 regulator IC and the limiting resistor (62 ohms) to approximately 250 milliamperes, anyway most small sized gell-type battery capacities ranges from 2.5AH to 7.5AH so charging time should take several hours. When the battery is full, the regulator adjust its voltage output from 15 volts down to 5 volts automatically terminate the charging process.




Automatic Battery Charger

Automatic battery charger automatically starts the charging procedure when battery voltage drops below a certain predefined value and stops after the voltage has risen above the maximum allowed value. Setup can't be easier, just connect two alligator clips to battery terminals and plug the device in mains. This way it can stay connected for months and the battery will never overcharge. This comes very very handy when you have a scooter or a real motorcycle that you don't drive during the winter time. Because we all know what happens to a battery when not used and especially during the winter.




Charge Monitor for 12V Lead Acid Battery

A battery is a vital element of any battery-backed system. In many cases the battery is more expensive than the system it is backing up. Hence we need to adopt all practical measures to conserve battery life. As per manufacturer's data sheets, a 12V rechargeable lead-acid battery should be operated within 10. IV and 13.8V. When the battery charges higher than 13.8V it is said to be overcharged, and when it discharges below 10.IV it can be deeply discharged. A single event of overcharge or deep discharge can bring down the charge-holding capacity of a battery by 15 to 20 per cent. It is therefore necessary for all concerned to monitor the charge level of their batteries continuously. But, in practice, many of the battery users are unable to do so because of non-availability of reasonably-priced monitoring equipment. The circuit idea presented here will fill this void by providing a circuit for monitoring the charge level of lead-acid batteries continuously.




Fast PIC NiMH / NiCd Battery Charger

This battery charger charges a NIMH 5-pack battery used in the BiPed robot in less than 1 hour, and charges the 10-pack NiCd used in the Snuf robot in about 30 minutes. To prevent overheating of the battery, the charging current is turned off when the slope of the battery-voltage turns from positive into negative. A second termination-criterion of the charging process is provided for safety: the charge time is limited to about 1 hour.




Intelligent NiCd/NiMH Battery Charger

This cheap and easy to build NiCd/NiMH Battery Charger is suitable for automatically charging a wide range of batteries for many applications. Proper chargers are usually expensive and cheap chargers supplied with the original equipment often incorrectly charge the cells and dramatically shorten their life. This 'intelligent' charger was designed for high current and rapid charge applications such as cordless power tools and model racing cars. These battery packs are expensive and sometimes difficult to purchase. This charger uses the cell manufacturer's recommended charge method, to safely and quickly charge batteries.




Intelligent NiCd/NiMH Charger/Cycler with 128x64 Graphical LCD

The accu cycler project presented here is an excellent solution for charging and discharging NiCd and NiMH accumulators for R/C modelers and others who make use of these accumulator types. With its performance it is very close to the many of the commercial products available on the market.




Lead Acid Battery Charger Circuit

Here is a lead acid battery charger circuit using IC LM317.The IC here provides the correct charging voltage for the battery. A battery must be charged with 1/10 its Ah value. This charging circuit is designed based on this fact.The charging current for the battery is controlled by Q1,R1,R4 and R5. Potentiometer R5 can be used to set the charging current. As the battery gets charged the the current through R1 increases.




Li-ion Battery Charger

This is a simple to build charger for single 3.7V lipo battery. The heart of the charger is TL431 shunt regulator that controls the incoming current. Charger comes with a convenient charging LED indicator. As charging current goes down so does the intensity of the LED.




Li-Po Charger and Balancer

This is a Li-Po charger and balancer project for R/C hobby.The charger circuit is based on the circuit of Electron head and all folks in the DIY electronics topic on the rcgroups.com.




LiPo Battery Charger

This is LiPo battery charger circuit based around the MAX1551 / MAX1555 chip from Maxim ICs. And it happens to be a very easy chip to use. I used the typical circuit from the datasheet and referred to the pin out to see which pin is what. I also used adapter board so that I could prototype the LiPo battery charger on a breadboard. The barrel plug towards the top goes into an LM7805 that can take 7-16V and regulates it down to 5V. Besides that, pretty simply stuff with only a handful of common components.




LIPO Battery Overvoltage Protection

Simple LIPO saver board to throw onto lithium based batteries for overvoltage protection. It consists of a TLV3012 comparator with onboard reference, an voltage divider, load resistors, indicator LED and a transistor. It should turn on the transistor, and load LIPO battery cell when its voltage is >4.25V Ive attached LIPO saver schematic. The diode represents the onboard reference in the comparator, eagle didn't have the device in its library.




LIPO Saver

The presented battery saver or TL431 LiPo Saver is designed to prevent deep discharge of lithium polymer batteries. Decreases the cell voltage of a LiPo batteries below 2.4 volts will permanently damage the cell. When LIPO battery is about to reach the critical voltage a buzzer alarm is activated. I have built several of these for use as Tx alarm and they do SCREAM especially if you fit twin piezo sounders. TL431 is adjusted to sound off at pretty much any low voltage level you wish.




LiPoly charging with MCP73833

For my latest projects I used a lot of single cell lipo batteries. They are really nice. High power density, low self-discharge, no memory effect and they can deliver quite an amount of current. But lipo battery handling is a bit more complicated as with other rechargeable batteries. You have to take care of under voltage and over charging as that may destroy the battery.




Lipoly Low Battery Indicator

Lipoly batteries are great power source for our AEGs, they offer high current capacities and are available in different shapes and sizes that can fit virtually any AEG. But they have a downside, they are prone to failures when over discharged. Their nominal voltage is 3.7V (4.2V-full charge) but must not go below their critical voltage of 2.7V. New development in AEG electronics protect the battery from going too low by either cutting the power or an audible warning that indicates low battery voltage. While saving up for the "Panther" or "Cheetah" SW-COMP, here is a cheap and easy to construct 11.1V lipoly lo-batt indicator.




Lithium Ion / Lithium Polymer USB Battery Charger

This is a MAX1811 based USB charger that can handle both Lithium Ion and Lithium Polymer 3.7V battery. It requires very few external components and provides ability to select between 4.1v and 4.2v battery regulation for different types of LiPo batteries. You can select between either 100mA and 500mA current charging mode and LED provides the status of the charging.




Lithium Ion Battery Charger with Microchip MCP73831

Here's a simple and inexpensive compact lithium ion / polymer battery charger based on Microchip's MCP73831 IC. It features adjustable current charging from 15mA up to 500mA for single cell lipo batteries. With this lipo charger just a few external components are needed. Constant voltage power supply of 5 ~ 6V is needed. Power can also be drawn from USB port. When USB power is 150mA charge current should not be higher. Charge current can be adjusted with external resistors. External LED provides status when lipo battery is fully charged. The LED lights when battery is fully charged. The maximum charging voltage is selectable from 4.2 to 4.5. This has to be chosen at the time of purchase. Typically 4.2V is a standard charging voltage. MCP73831-2 <- 4.2V, MCP73831-3 <- 4.3V, MCP73831-4 <- 4.4V, MCP73831-5 <- 4.5V.




Lithium Ion, Lithium Poly Charger Circuit

The above circuit will charge any 2-cell * Li-Ion battery pack. Maximum current is about 650 milliamps. The circuit is designed for batteries of 900mah or higher. Note this circuit is NOT for Li-Metal batts (i.e. Duralites). Power source can be a 12v Gell cell (Power panel), or can be powered by a car's cigarette lighter. I use an old 12v DC wall transformer (800ma or more.) Radio shack sells a 12v/1amp wall DC adapter #273-1776 that will work. Supply does not need to be regulated. In fact my cheap supply outputs 17 volts with no load.




Microchip's Li-ion battery charger MCP73831 IC

Microchip announced the expansion of its analog power-management family with the MCP73831 battery charger, a fully-integrated, single-cell, Li-ion/Li-Polymer charge-management controller. Tiny 500mA linear charge management controller can be powered directly from the USB port. Includes integrated pass transistor, current sense and reverse-discharge protection, the MCP73831 charger reduces the number of components needed for battery-charger designs. Its highly accurate, pre-set voltage regulation (maximum accuracy 0.5 per cent to 0.75 per cent) results in more fully charged batteries and extended battery life. Since the MCP73831 charge-management controller includes a pass transistor, current sense and reverse-discharge protection on a single chip, it reduces the number of system components needed for battery-charger designs, which, added Microchip, lowers overall system costs.




Ni-Cd Charger

This is a NiCd/Ni-MH charger that can charge with constant current and automatic charge termination when the total voltage for all cells reach the setting voltage.




Nicad Battery Charger

This simple charger uses a single transistor as a constant current source. The voltage across the pair of 1N4148 diodes biases the base of the BD140 medium power transistor. The base- emitter voltage of the transistor and the forward voltage drop across the diodes are relatively stable. The charging current is approximately 15mA or 45mA with the switch closed. This suits most 1.5V and 9V rechargeable batteries.




NiCd Charger with Thermal Peak Detection

The electric model aircraft and car industries have produced a bewildering array of field chargers for NiCd motor battery packs. These range from simple 6 or 7 cell chargers consisting of a resistor and mechanical timer, to more complex chargers with peak detection, cycling, and the ability to handle 36 cell packs.




NiCd/NiMH Battery Charger

This cheap and easy to build NiCd/NiMH Battery Charger is suitable for automatically charging a wide range of batteries for many applications. Proper chargers are usually expensive and cheap chargers supplied with the original equipment often incorrectly charge the cells and dramatically shorten their life.




Portable USB Charger

Portable USB Charger is a device that will charge things like Ipods, PDAs, that accepts charge from a USB port. It runs off a 9-V battery, and through the simple circuit, out comes a regulated 5-V perfect for a USB port. Portable USB chargers will always be handy, lets face it these days every gadget around us has USB charging capabilities. This is a very basic and simple project, and cheap too. Maybe its time for you to build your own diy portable USB charger.




Simple Lithium-ion / Lipo Battery Charger

This is a Lithium-ion charger for lipo batteries. Circuit schematic shows configuration for charging single 3.7V lipo battery but voltage can be set to charge several batteries in series. Lipo charger sets a current limit with the LM317, and 1 resistor, and the voltage limit with the TL431, and 2 resistors. 1K resistor is needed to let the TL431 decrease the LM317 current, and to provide the necessary current to the TL431. The optional Schottky diode at the output will prevent current flowing back from battery to the charger circuit when power is disconnected, and reverse biasing of the LM317. Power supply with more than 3V above output voltage is required.




Solar Battery Charger with LM317

This is a solar panel battery charger schematic for AA and AAA rechargeable batteries. A small solar panel makes an excellent battery charger for AA and AAA rechargeable batteries. Only a few components are required and construction is very simple making this a perfect first renewable energy project. Rechargeable AA and AAA batteries have a voltage of around 1.2 Volts when fully charged. Therefore 2 in series gives a total of 2.4 Volts, 4 in series 4.8 Volts. Common solar panel output voltages are 3 Volts for example the 3V 100ma solar panels, and 6 volts - perfect for charging 2 or 4 batteries respectively. Solar panels should be well adapted to the battery to be charged or the battery may be overcharged. If you want to charge batteries with different capacities, then you need to change the solar panels. Since this is a simple solar battery charger that does not automatically turn off when the battery is full. So we need to maintain the charging current is low enough that will not damage the battery even when they are fully charged. An LM317T voltage regulator chip that can be used with a suitable resistor to regulate current. See solar AA battery charger




Solar Battery Charging

This instructable will show you how to make your own solar battery charger from very simple components. It is taken from my documentation provided with a kit I supply - you should easily be able to source the same components yourself of course.




TL431 Li-ion Battery Charger

This is a simple to build charger for single 3.7V lipo battery. The heart of the charger is TL431 shunt regulator that controls the incoming current. Charger comes with a convenient charging LED indicator. As charging current goes down so does the intensity of the LED.




USB Li-ion Battery Charger

This is a charger for lithium ion batteries which takes its power from the USB port of a computer. It uses the MCP73861 or MCP73863 Li-ion battery charger chip manufactured by Microchip. Microchip MCP73861 or MCP73863 are advanced, fully-integrated, single-cell Li-Ion/Li-Polymer charge-management devices allow these peripherals to utilize the full power of the USB port.




USB Lipo Battery Charger

The MAX1551 and MAX1555 charge a single-cell 3.7V lithium-ion LiPo battery from both USB and AC adapter sources. They operate with no external FETs or diodes, and accept operating input voltages up to 7V. On-chip thermal limiting simplifies PC board layout and allows optimum charging rate without the thermal limits imposed by worst-case battery and input voltage.




USB Powered AA NiMH and NiCd Battery Charger

The charger in this project is designed to charge two AA NiMH or NiCd cells of any capacity (as long as they are the same) at about 470mA. It will charge 700mAh NiCds in about 1.5 hours, 1500mAh NiMHs in about 3.5 hours, and 2500mAh NiMHs in about 5.5 hours. The charger incorporates an automatic charge cut-off circuit based on cell temperature, and the cells can be left in the charger indefinitely after cut-off.




USB-Powered Lithium-Ion Battery Charger

With a maximum power rating 5.25V/500 mA, the USB power bus is a great source for charging a single-cell Lithium-Ion battery. The circuit in Figure 1 shows how to build a USB-powered single-cell Li-Ion battery charger using National Semiconductor s LM3622 Li-Ion Battery Charger Controller.




Circuit-Zone.com © 2007-2024. All Rights Reserved.

FM Transmitters
PLL Synthesizers
Stereo Encoders and Decoders
Antennas
FM Receivers
Audio / Amplifiers
Power Supplies
AC/DC Inverters AC/DC Converters
Battery Chargers
Remote Control
PC Related
Test and Measurement
PIC / ATMEL / AVR
USB Circuits
Telephone Related
LED
Miscellaneous Circuits
Stepper Motors