HOME   |   STORE   |   SCHEMATICS   |   DOWNLOADS   |   CONTACT  

Circuit-Zone.com - Electronic Projects



MAX16834 High Power LED Driver
Posted on Monday, March 21, 2011   •   Category: LED

MAX16834 High Power LED Driver

There is a major advantage to using LEDs for lighting: various dimming techniques allow seamless control of the light output from the LED source. While LEDs are efficient light sources, the dimming feature also allows for considerable power savings. Control over the light output also helps to set the desired ambience. PWM dimming is preferred to analog dimming for several reasons. For many applications PWM dimming maintains the color of the light output regardless of the dim level. For circuit design, PWM control is more immune to noise; the control signal need not be accurate in both voltage levels and dimming frequency; and the driver circuit design is less complex. PWM dimming usually requires a control line that carries the PWM dimming signal, in addition to the two power-supply lines. This standard configuration is, however, a drawback for applications that use common dimming for a large number of lights; the configuration also makes it difficult to replace the incandescent light installations with two-wire supply lines that depend on supply chopping for dimming control. Traditional, crude LED driver circuits that work with power-supply dimming are problematic. Those drivers turn off power to the LEDs gradually as the input filter capacitors discharge to the minimum operating voltage of the driver. That process can cause the input and output filter capacitors to discharge to low levels. Then when the supply is turned back on, a huge surge of current flows to replenish the capacitor charge, thus causing EMI issues and premature dimmer damage. To prevent these various issues, those circuits use large inductor filters that increase cost. The LED driver reference design described here addresses this basic design challenge with PWM dimming. This LED driver implements PWM dimming based on supply chopping; it does not cause any supply current overshoot. The design provides up to 90% efficiency while operating from a 24V supply. It allows a unidirectional supply input with an efficient semi-MOSFET bridge rectifier at the input. Figure 1 shows the top view of the design board.

     1.5V to 5V Converter
     Power RGB LED Controller
     USB LED Fader
     Transformerless Joule Thief
     10 Flashing LEDs using CD4017
     LED Torch Using MAX660
     1.5V LED Flasher
     LED Bargraph Optical Tachometer
     Running LEDs with PIC 12F675
     FANCY LEDS
MAX16834 High Power LED Driver

 

Build Accurate LC Meter and start making your own coils and inductors. This LC Meter allows to measure incredibly small inductances making it perfect tool for making all types of RF coils. LC Meter can measure inductances starting from 10nH - 1000nH, 1uH - 1000uH, 1mH - 100mH and capacitances from 0.1pF up to 900nF. The circuit includes an auto ranging and reset function to make sure the readings are as accurate as possible ... [more]



Circuit-Zone.com © 2007-2024. All Rights Reserved.

AC / DC Innveters
AM Radio
Amplifiers
Antennas
Arduino
Audio Attenuators
Audio DAC
AVR
Battery Chargers
CNC Milling Devices
Counters / Frequency Meters
Fluorescent Lamps
FM Radio / Receivers
FM Transmitters
Frequency Wave Generators
Headphone Amplifiers
iPOD Hacks
LC Meter
LED
Miscellaneous
Motor Controllers
MP3 Players
Oscillators
Oscilloscopes
PC Circuits
PCB
Phone Circuits
PIC
PLL Circuits
Power Supplies
RC Servo Motors
Remote Control
RF Radio Frequency
Robots
Sensors
Solar Circuits
Stepper Motors
Stereo Encoders
Test and Measurement
Timer Circuits
TV Transmitters
USB Circuts
USB Interface Adapters
USB Soundcards / USB Headphones
Video
Volume Control